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ABSTRACT Starting from an arbitrary isometry of an ar-
bitrary even lattice, twisted and shifted vertex operators are
introduced. Under commutators, these operators provide real-
izations of twisted affine Lie algebras. This construction, gen-
eralizing a number of known ones, is based on a self-contained
"calculus."

Section 2. Assumptions

Suppose the following.
2.1. L is a finitely generated free abelian group.
2.2. (, -) is a nonsingular symmetric Z-bilinear form on L

such that

Section 1. Introduction

The discovery that vertex operators can provide construc-
tions of affine Lie algebras has stimulated much activity. In
the first construction (1) and its generalization (2), affine al-
gebras of types A, D, and E, twisted by the principal auto-
morphism of the underlying finite-dimensional simple Lie al-
gebra g, were realized by means of certain "twisted vertex
operators." (The principal automorphism extends the Cox-
eter element of the Weyl group, acting on a Cartan subalge-
bra.) In the next construction (refs. 3 and 4), untwisted affine
algebras of types A(1), D(1), and E(1) were represented using
the "untwisted vertex operators" of dual-string theory. This
was modified in ref. 5 to obtain twistings by certain outer
involutions of g. In ref. 6, another twisted construction was
found, this time based on an involution of g that is -1 on a
Cartan subalgebra, providing a generalization of ref. 1 differ-
ent from that of ref. 2.

Certain aspects of these constructions were uniformly
generalized in ref. 7, in which the role of an automorphism of
the Cartan subalgebra was emphasized. Here I continue the
approach of ref. 7 to give a common generalization of all the
existing constructions, starting from an arbitrary isometry of
an arbitrary even lattice and based entirely on elementary
calculations with vertex operators. I construct an affine al-
gebra as an explicit algebra of operators on a "generalized
Fock space" and, in the process, obtain a formula for an
extension to g of the automorphism of the root system. The
case of the principal automorphism is analyzed in detail in
ref. 8.

I also give a "shifted" generalization of the construction.
Over C, I thus obtain continuous families of twisted realiza-
tions of affine Lie algebras of types A, D, and E. When the
"shifting parameter" is rational, the resulting twisted affine
algebra has a corresponding Z-grading.
One of the motivations was to try to find an algebraic ap-

proach to reducing the critical space-time dimension in string
theory from 26 or 10 to 4. In our construction, the dimension
of the span of the lattice is "reduced" to the dimension of the
span of the sublattice fixed by the automorphism. When ap-
plied to the E8 root lattice, perhaps this can be used to break
the E8-symmetry of the heterotic string (9).
The details of this work will appear elsewhere.

(a, a) E 2Z for a E L.

2.3. v is an automorphism ofL such that (va, v/3) = (a, /3)
for a, A E L.

2.4. m is a positive integer such that vm = 1.
2.5. If m is even, (Vm/2a, a) E 2Z for a E L.
Remark: Given L, (-, *), v and m satisfying assumptions

2.1-2.4, assumption 2.5 can always be arranged by doubling
m if necessary.
Observe that

[2.1](>I vpa, a) E 2Z for a EL.
PEZ/MZ

Section 3. Notation

Let F be a field of characteristic 0 containing a primitive mth
root of unity Ct. (Later we shall assume that F contains addi-
tional roots of unity. We may take F = C, w = e2 i/m.) Em-
bed L canonically in the F-vector space ), where F= F 0 zL,
and extend (, *) and i' by F-linearity to t.
We shall use some elementary results in the self-contained

sections 2 and 3 of ref. 7.
For n E Z, set f(n) = {x E IVx = xnx} C b, so that b =

UpEiZ/mZ i(p). (We identify ,(n mod m) with bi(n) for n E- Z.) For
p E Z/m;, denote by

PA:l -*() [3.1]

the pth projection and, for x E 1 and n E Z, set x(n) =
P(n mod m)X. Viewing ) as an abelian Lie algebra, consider the
v-twisted affine Lie algebra (in the terminology of ref. 10)

V) = H0n(Z b(n) 0tn (D Fc e Fd with brackets determined by

[x 0 t', y 0) ti] = m l (X, y)i8i+1,oc
[c, t(v)] = 0, [d, x 0 ti] = ix 0 t'

[3.2]

for i, i E Z,_x E b(i) y e fjP). Consider also its commutator
subalgebra b(v)' = [n#io thn) 0 tn ( Fc and the subalgebras
N+= H~n>O tb(n) 0 t0, b(V) = Nj(V)+ (o) ED Fc ® Fd. The
form (, ) being nonsingular on fj, we observe that tb(v)' is a
Heisenberg Lie algebra, in the sense that its commutator
subalgebra equals its center and is one-dimensional.
Make F a (one-dimensional) b-module as follows: f(V)+. 1

= 0, t(o) 1 = 0, c 1 = 1, d 1 = 0. Form the following induced
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b(v)-module, which we denote S:

S = S(t(v)4 = U(f(v)) 0 u(boF. [3.3]

Here U( ) denotes the universal enveloping algebra, S( ) de-
notes the symmetric algebra, and we have used the Poin-
car6-Birkhoff-Witt theorem to make the identification.
Then S is irreducible even under the Heisenberg subalgebra
t(v)', and S provides the "canonical realization of the Hei-
senberg commutation relations." The action of d defines a Z-
grading on S: S = H-'n -N Sn, where S,, is the n-eigenspace of
d and N denotes {O, 1, 2, . . .}.
For n E Z and x E b(,), write x(n) for the operator on S

corresponding to x 0 O.
We shall use the elementary calculus of formal variables (,

;1, C2, ** * explained in sections 2 and 3 of ref. 7. For a E ,
define E+(a, () = exp(±,,>o ma(n)(n)t'/n), a pair of formal
Laurent series in C with coefficients in End S. (Here exp
denotes the formal exponential series.) By proposition 3.4 of
ref. 7, we have

for n E Z, and suppose that (vPa, l3) 2 -2for all p E= Z/mZ.
Then

Il( - CPw/;)(vPaP3)
C(/3, a)(;i/4i)(xv a,3)H(1 -a,- (vPBa)

- Ei lE(v a, p)83(,-1/A2) + I E1(V a, D5((o-%lA2)
rEl(- 1) rEl(-2) [

- (2 (1 v'Pa, + F(vra, P) 5(w

where the unindexed sums and products range over p E
Z/mZ.
We now obtain another description of the function E1. For

a, /3 E L, define E2(a, 13) = (-1)(XPPa,,-(XpvPaP) -

II(._ -P)(vPa°,, where the sums and product range over
-m/2 < p < 0. Then E2 is bilinear, E2(Va, vO) = E2(a, 13) and

E2(a, /E)/2(3, a) = (-l)(a. )C(a, /3)-1.E+(a, )E (/3, 02) =

[3.4]E-(P, C2)E+(a, 4,) 1 (1 - (0-ptl/;2)>Pal/)
PE=Z/mZ

for a, /3 E8 b.

Section 4. An Identity

Write E '(a, /3) = 1IO<p<m/2(l - C, P)((VP+ v )a/3O

I e'(a, /3)2(v i2a,) if m E 2Z

E*(a, /3) = E'(a,/3) if m E21Z+ 1.

Then

E,(a, /) = E2(a, O)E*(a, /).Define the function [4.7]
C:L x L-* Fx

(a, 3) -_, (_)(1vPa,3)(,(YpvPa,13)
= II(_ (,sp)(vPa,,),

[4.1]

Recalling assumption 2.5, we define a'(a) = lO1<p<m/2 (1 -

Co-P)(Pawa)
r&(a)2(vmI2aa)/2

ou(a) = c'U(a)
if m E 2Z
if m E2Z+1.

where the sums and product range overp e Z/mZ. Then C is
bilinear into the abelian group FV; i.e.,

C(a + /, y) = C(a, y)C(/3, y)

C(a, /3 + y) = C(a, /3)C(a, y) [4.2]

for a, /, y E L. Also,

C(a, a) = 1 [4.3]

C(Pa, v/3) = C(a, /3). [4.4]

The verification of [4.3] uses [2.1]. Note that C(P, a) = C(a,

Recall from section 2 of ref. 7 the notation 5(t) = EA',
DcS() = Ynezntn, where D = Dr= (d/dt). For a, P E L, set

El(a, /3) = 1o<p<mCl-( P)(v 'I),

F(a, /) = ((v - P)a, /3)
2 op<m 1 tco

Note that El (resp, F) is a bilinear function from L x L to Fx
(resp, F). Also,

el(va, vB) = el(a, 3),

e1(as /3)/61(/, a) = (-l)(aP)C(a, /3)-1,
F(a, a) = 0.

PROPOSITION 4.1. Let a, E L. Set

I(n) = {p EE Z/mZl(vPa, /3) = n}

Set CLo = (- 1)mc). Then t0 is a primitive 2mth root of unity if
m is odd and, for any m, -1 and co are powers of cwo. In view
of formulas 4.2 and 4.3, there is a unique (up to equivalence)
central extension

[5.1]

of L by the cyclic group generated by Co with commutator
map C-i.e., such that

aba-'b-1 = C(a, b) for a, b E L. [5.2]

Ifwe replace the map - in [5.1] by vo -, we obtain another
central extension of L by (w0) with commutator map C, by
[4.4]. By the uniqueness, there is an automorphism v of L
(fixing c0) such that vi covers v-i.e., such that

[4.5] (v'a) - via for a E L. [5.3]

It is easy to see that the automorphisms of L covering the
identity automorphism of L are precisely the maps p*: a ~-+
ap(a) for a homomorphism p: L -+ (coo). Similarly, there is a

[4.6]

Then

[4.8]

ar(va) = a(a)

E*(a, /3) = o!(a + /3)/lo(a)or(/3).

Section 5. L and v

[4.9]
[4.10]
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homomorphism p0: L n(O) --.* (wo) such that I'a = apo(a) if
pa- a. Now po can be extended to a homomorphism p:L --

(w0) since the map 1 - Po induces an isomorphism from LIL
nf o to the free abelian group (1 - Po)L (the projection of L
to the orthogonal complement of )(o)). Multiplying v by the
inverse of p* gives us an automorphism vj ofL satisfying [5.3]
and

va =a if pa 7 . [5.4]

Section 6. Irreducible N-Modules

Let-N = (1 - P0)t n L = {a e LI(a, t(o)) = O}, M = (1 - v)L
C N. On N, the commutator map C (see [4.1]) simplifies to

CN(a, )o= W(pVPap. [6.1]

Let R = {a E NICN(a, N) = 1}, the radical of the alternating
bilinear form CN. It is easy to see that M C R. Denoting by Q
the subgroup of L obtained by pulling back a subgroup Q of
L (see [5.1]), we observe that R is the center ofN and that M
C R. Observe that avza-1 E M for all a e L. Using [5.4], we
can prove the following.
PROPOSITION 6.1. There is a unique homomorphism r: M
FX such that T(w0) = wo and (ava-') = cw-(!vPi i)/2for a

E L.
Now NIM is a finite group, and hence so are NIM and

N/Ker T. Choose moe N such that x"° = 1 for all x E N/Ker
T.
PROPOSITION 6.2. Assume that F contains a primitive moth

root of unity. There are exactly IR/MI extensions of T to a
homomorphism x:R -E P. For each such X, there is a
unique (up to equivalence) irreducible N-module on which R
acts according to X, and every irreducible N-module on
which M acts according to T is equivalent to one of these.
Every such module has dimension IN/RI1/2. To construct the
module corresponding to X, let A be any subgroup ofN (nec-
essarily containing R) that is maximal such that the alternat-
ing bilinear form 6.1 is trivial on A. Then A is a maximal
abelian subgroup of N. Let qi:A -- F be any homomor-
phism extending X and denote by FG, the A-module F with
character 4i. Then T is isomorphic to the induced N-module
F[N] 0 F[A]Fp = F[N/A] (F[M] denoting group algebra).

Section 7. The Vertex Operators

Let T be any N-module on which M acts as multiplication
by the character r(see Proposition 6.1). Form the induced L-
module UT = F[L] 0 F[NT. Since T may be viewed as a mod-
ule for the finite group N/Ker T, T is completely reducible.
In case F contains enough roots ofunity, the structure of T
follows from Proposition 6.2 and, in the irreducible case, UT
= F[L] 0 F[A]Ff = F[L/A].

In general, L and )(o) act on UT as follows:

a-b 0 t = ab 0? t,

a-b X t = (a, bib C) t [7.11
for a, b E L, t E T, a E )(o), and we have [a, a] = (a, a)a. In
case (a, L) C Z, define the End UT-valued formal Laurent
series ha as follows:

V-*b 0 t = ((a b)b 0 t [7.2]

and the operator (a on UT by clob 0 t = aca b)b 0) t. Then
Vaa = a+('aa), coaa = acoc<(. Moreover,

pa = ac,.- vPf-(1Pada)/2 [7.3]

on UT. It follows that vM = 1 on UT and hence on L.

Define a i-grading on UT by

deg(b 0 t) = -2 ( VP, [7.4]

and define an operator d on UT = ILEN (UT), accordingly.
Then UTbecomes an b(v)-module by making b)(v)' act trivial-
ly.

Since the projection operator P0 (see [3.1]) induces an iso-
morphism from LIN to POL, we have a natural isomorphism

UT= F[POL] 8) FT [7.5]

of l(v)-modules, t(v) acting in the obvious way on F[PoL] 0)
T.

Recalling [3.3], set

VT = S 09 FUT = H (VT),,
nE-N

[7.6]

a tensor product b(v)-module on which ! acts by its action
on the second factor and whose i-grading is determined by
the action of d. For a E L, we define the corresponding ver-
tex operator X(a, () and its coefficients xa(n) E End VT as
follows:

X(a, ) = E-(-a, t)E+(-a, t)aC-YiP4-(Y.Paa)/2 [7.7]

= xa(n)t',
nEZ

an End VT-valued formal Laurent series.
Using [7.3] we obtain

X(via, C) = X(a, wo)
DX(a, t) = [d, X(a, c)],

[7.8]

[7.9]

the last formula showing that each operator xa(n) has degree
n [i.e., takes (VT)m to (VT))m+n for all m E Z].

It will be convenient to renormalize the vertex operators
as follows: Recalling [4.8], define Y(a, t) = m-(aa)/2
o(Z)X(a, t) = Inez Ya(n)(nfl Then formulas 7.8 and 7.9 also
hold with Y in place of X (recall [4.9]).

Section 8. Commutators

For a E I, write a(;) = nCEz a(.)(n)n, a'(t) = YnEZ,±n>O
a(")(n);" + (1/2)a(o)(0), where a(,,)(n) is understood as an op-
erator on VT in the obvious way. Then, a(;) = a+(;) + a-(e).
For a E L and x E F, set :(a(Q) + x)Y(a, t): = a-(t)Y(a, C) +
Y(a, t)a+(Q) + xY(a, C).
Using [3.4], Proposition 4.1, [4.7], [4.10], [5.2], and the

rules for multiplying suitable expressions by 8 and DS (see,
e.g., proposition 3.9 of ref. 7), we can prove the following:
THEOREM 8.1. Let a, b E L and suppose that (v~a, F) 2

-2for all p E i/mi. Forn E i, set J(n) = {p E i/mZI (vPA,
F) = n}. Then

[Y(a, tj), Y(b, 02)] =

m-1 I EAVzP11, E)Y((vPa)b, t2)3(&) Pt1/2)
pEJ(-l)

+ m~2 E E2(vPa, b)[Y((vPa)b, O7)DS(&W1/42)pEJ(-2)

+ :(MVPW(C2) - F(vPR, 5))Y((i"'a)b, 02:S(w&)1/A2)].

Mathematics: Lepowsky



Proc. NatL Acad Sci. USA 82 (1985)

By equating the coefficients of t"C22 on the two sides, we
obtain a formula for [ya(jl), Yb(n2)].
Sometimes it is useful to parametrize the vertex operators

by means of elements ofL rather than L. To do this, choose
a normalized section of L-i.e., a map a + ea from L to L
such that eo = 1 and ea = a for all a E L. As is well known,
the function ec: L x L -+ (wo) defined by eaes = Ec(a,
f3)ea+~ for a, 3E L satisfies the conditions

ec(a, f3)Ec(a + (, y) = ec(13, y)ec(a, (3 + y) [8.1]
8c(O, 0) = 1 [8.2]

Ec(a, /3)/Ec(G, a) = C(a, (3); [8.3]

that is, Ec is a normalized 2-cocycle associated with C. Con-
versely, any such cocycle comes from a normalized section
of L. Recall also that it is easy to construct such cocycles by
means of bilinear functions Ec (which automatically satisfy
[8.1] and [8.2]).
Define the function 7: ZL/m7 x L -- (co) by the condition

v ea = 71(p, a)ep,.
Also define e: L x L -- (co) by e(a, (3) = e2(a, (3Ec(a, /).

By [4.6] and [8.3], E is a normalized cocycle associated with
the bilinear map (- 1)(a°.13

It is easy to reformulate Theorem 8.1 in terms of the vertex
operators defined as follows for a E L: Y(a, t) = Y(ea, O) =
InEZ Ya(n)n . Formula 7.8 is now replaced by the following:

Y(a, wPt) = vq(p, a)Y(vPa, a)

for a E L, p E Z/mZ.
For convenience, we assume from now on that L is posi-

tive definite-that is, the natural lR-linear extension of (, -) to
the real vector space St zL is positive definite. Setting Ln
= {a E LI(a, a) = n} for n E Z, we have that (a, (3) = 0, ±1,
±2 for a, (3E L2.
THEOREM 8.2. Let a, A E L2. Recall the notation I(n)from

Proposition 4.1. We have

[Y(a, W), Y(V3, 02)] =

m'-1 I i(p, a)E(vPa, f3)Y(vPa + (3, W2)8( Pt1/A2)
PEI(-1)

+ m-2e((3, (3) 71(p, a)[D8(cO%1/A2)
pEI(-2)

- mI3(Q2)8(&J-1/A2)I.

(We use that vPa = -(3 for p E I(-2) and that in this case
F(vpa, (3) = 0 by [4.5].)

Section 9. The Twisted Affine Algebra

Motivated by Theorem 8.2, we define a nonassociative alge-
bra (g, [a, *]) over F as follows: g = b ED HaEL FXa ({Xa}aeL a

set of symbols), with [b, b] = 0, [h, Xa] = (h, a2$xa = -[xa, h,

e(a,- a)a if a + P =O

[xa, X] (a, f3)xa+,s if (a, (B) = -1

0 if (a, P)
for h E A, a, (3 E L2. The fact that e is a normalized cocycle
associated with the bilinear map (_1)(aI3) implies that g is a
Lie algebra (refs. 3 and 4). We extend the form (-, -) from b to
a nonsingular symmetric form on g as follows: (h, xa) = 0 =

(Xa, h),
[(a,-a) if a + 83=O

(xa, XP) lo if a+13#O.

Then (., .) is g-invariant; i.e., ([x, y], z) + (y, [x, zi) = 0 forx,
y, z E g. We also extend the automorphism v oft to a linear
automorphism v of g by the following: vxa, = iq(1, a)xa.
Then vm = 1 on a,

vpxa = n(p, a)xvPa [9.1]

for p E Z/mmZ, and v preserves [, ] and (., .).
Assume for convenience that L2 spans b. Then g is a semi-

simple Lie algebra. All the conditions of section 2 of ref. 7
hold, and we can form the twisted affine Lie algebra 4(v) =
unEZ g9(n) 0 tn E Fc D Fd (g9() denoting the cn)-eigenspace of
v in g), with brackets normalized so that [x 0 t', y 0 tP] = [x,
y] 0 t'+' + m-'(x, y)i8i+j,o c, i, j E Z, x E g(), y E g(j) (cf.
[3.2]). All the hypotheses of theorem 2.6 of ref. 7 hold (see
[8.4] and Theorem 8.2), where in the notation of that theo-
rem, we take E = End VI, X'(a, t) = Y(a, ,) for a E L2,c
1 and the scalar e = m- , and so we have the following.
THEOREM 9.1. The representation of t(v) on VT extends

uniquely to a Lie algebra representation of g(v) on VT such
that Ynez((xa)(n) 0)tn)gn Y(a, t)for all a E L2-i.e., (xa)(n)
0R tn > ya(n) for all a E L2, n E 7.
Thus we have constructed the twisted affine Lie algebra

by means of twisted vertex operators.
PROPOSITION 9.2. The 4(v)-module VT is irreducible ifand

only if the N-module T is irreducible (cf. Sections 6 and 7).

Section 10. Shifted Operators and Their Commutators

Fix an element y E b(o). We shall construct "y-shifted" ana-
logues of the vertex operators already considered, and we
shall compute certain brackets. The shifted operators should
be thought of as adapted to the coset L + 'y of L.

Define a y-shifted action of b(o) on UT as follows: at b 0 t
- (a, b + y)b 0 t for a E b(o), b E L, t E T (cf. [7.11).
Correspondingly, define

fat.ab 0 t -= (a'b+ )b 0 t

(cf. [7.2]). Here and throughout this section, we allow arbi-
trary (not necessarily integral) values of F as exponents of
formal variables such as t. The expected algebraic rules shall
hold for such symbols.
We also define a y-shifted F-grading on UT as follows:

degy(b 0 t) = -(1/2)(YvP(b + y), b + y) (cf. [7.4]). Corre-
spondingly, we have UT = HnEF(UT)fl, and we define a -
shifted action dyof the operator d on UT so as to act as multi-
plication by degY(b 0 t) on b 0) t.

Retaining the original (trivial) action of t)(v)' on UT, we
obtain a new b(v)-module structure on UT, and hence on VT,
by the tensor product action. The isomorphism 7.5 still
holds, with t(v) acting in the -shifted way on F[POL]. We
have the corresponding analogue of [7.6], where the grading
is now an F-grading.
For a E L, we use formula 7.7, with I vPi replaced by

(IvP )V, to define the y-shifted vertex operatorXV(a, t), and
we define its components as follows: XY(a, n)= EnGF
XZ(n)t'; similarly, for YV(a, t) (a E L). Then DXY(a, I) = [dy,
XY(a, t)] (cf. [7.9]). Also, 4(n) + 0 only if n E -m(a, y) + Z.
Since XY(a, I) = X(a, ;);-m a), it is easy to derive commu-
tator formulas for yshifted vertex operators from Theorems
8.1 and 8.2.

Suppose that 'y lies in the rational span of L. Choose M E
N,M>O such that M(a, y) E Z for a E L, and letCy E F be
a primitive mMth root of unity such that yM = co. For a E L
define YY M(a, C) = Yr(a, tM). Define a linear automorphism
vy of g by asserting that v = v on I, v, = v", M~a on x.
for a E L2. Then vy is aLie algebra automorphism of g pre-
serving (-, -), and vWyM = 1 on g. Forp E Z/mMZ and a E L,
define %y(P, a) = wyPmM(a vY1q(p, a). Then the obvious ana-
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logue of [9.1] holds for iny. Under the assumptions of Theo-
rem 8.2, we find that [YYM(a, y,rYxM3, C2)] equals the
expression in the right-hand side in that theorem, with m re-
placed by mM; I(n), by its analogue for 7/mM7; 7, by qy; Y,
by rYM; w, by coy; and A(2), by f3() + (13, v)

Consider the twisted affine algebra b(v,), where we take
the scalar e of section 2 of ref. 7 to be (mM)-1. Then the b(v)-
module VT becomes an b(v,)-module with c b-+ 1, when we
use the Lie algebra isomorphism f(vy) --+ 1(v) taking x 0 tMn
x 0tn(n E Z, X E b(Mn)), c ~-+ c and d- Md. Using

theorem 2.6 of ref. 7 with E = End VT, X'(a, i) = YnM(a, C)
for a E L2, c + 1 and e = (mM)-', we have the following
generalization of the results of Section 9.
THEOREM 10.1. The representation of 1(vy) on VT extends

uniquely to a representation of the twisted affine algebra
g(vy) on VT such that YnEz((Xa)(n) 0 tn)n -+ YYM(a, C)for a
E L2 ((X)(n) defined with respect to vy), and VT is g(vY)-
irreducible if and only ifT is N-irreducible.
Remark: The g(vy)-modules VT in the irreducible case are

basic modules (level 1 standard modules for affine algebras
of types A, D, and E). For distinct pairs v, y, these algebras
and modules can be isomorphic, and it can be very interest-
ing to examine such isomorphisms, as in refs. 11 and 12. In
particular, one gets nontrivial character identities, using
[7.5]. In this connection, it is often convenient to replace t by
ti/mM in the definition of the twisted affine algebra and C by
C'ImM in the definition of the vertex operator, as in formula 4
and theorem 4 of ref. 11, for example.

Note Added in Proof. Theorem 8.1 has the following complete and
surprisingly concise generalization. In the field of formal Laurent
series y-n>,anazn (a, E F) in a new variable z, set y = 1 - (1 - Z)l/m.
Then for all a, b E L, MY(a, C), Y(b, W2)I is the coefficient of Z-' in

>-I Y(Vra t2(l - y)) Y(b, W2)((1 -
rEZ/mZ

Here the product of vertex operators is to be put into "normal or-
dered" form using [3.4] and then expanded in powers of y and hence
z. Lie algebras generated by the components of given vertex opera-
tors can be studied by iterating this formula.
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